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ABSTRACT 6 6  3 2  
Systems described by ordinary l i n e a r  d i f f e r e n t i a l  equations with time-varying 

coeff ic ients  may be conveniently analyzed using t h e  concepts of state variables 

and fundamental matrix. Characteristically, the i n m r s e  of t h i s  matrix appears 

i n  the  state t r ans i t i on  equation. 

applicable t o  a c lass  of dynamic systems, which includes as a member t ra jec tory  

perturbation problems, i s  presented. 

be obtained by a simple rearrangement of elements of t he  or ig ina l  matrix. 

An inversion 'property of the  fundamental matrix 

This property allows the  inverse matrix t o  

When 

the  matrix is of high order, s ignif icant  advantages accrue i n  both t i m e  saving 

and numerical accuracy. 
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lXVlZRS3cON PROpEkTY O F  THE FUNDAMERTAL MATRTX 

ASSOCIATED WITH TRAJECTORY 

r n T U R B r n I O N  PRQEL;EMs 

'By Alan L. Friedland& 

Increased emphasis has been given recently t o  the application of l inear  per- 

turbation techniques i n  studies of t ra jectory and guidance! problems (e. g. 

3).2 

l i n e a r  d i f f e ren t i a l  equations w i t h  time-varying coefficients. The solution of 

such a set can be grea t ly  f ac i l i t a t ed  by t h e  concepts of "state variables" and 

% "fundamental matrices'?, where t h e  state t rans i t ion  equations are expressed i n  

&i t e r n  of these computable matrices, 

I, 2, 

The resul t ing perturbed equations of motion are given by a set of ordinary 

t- 

d 

Characterist ically,  t h e  inverse of the 

fundamental m a t r i x  appears i n  t h e  equations. 

high-order matrices can be both t i m e  consmng and inaccurate even with the a i d  

of d i g i t a l  computers, Fortunately, i n  t h e  ease of perturbed t r a j ec to r i e s  there  

exists an inversion property, which allows the  inverse t o  be obtained by a 

simple rearrangement of elements of t he  or iginal  m a t r i x .  

been indicated by McLem et al (2)  f o r  the  special  case of coasting t ra jector ies .  

The purpose of the  present paper is  t o  extend t h e  inversion property t o  EL c lass  

of dynamic systems, which includes as a mmber t ra jee tgry  motion influenced by 

an acceleration forcing function (e. g, 

g rav i ta t iona l  acceleration. 

property deserves wider attention, 

It is recognized t h a t  inversion of 

Such a property has 

thrust  acceleration) i n  addition t o  

Also, it is f e l t  tha t  the usefulness of t h e  inversion 

'Research Engiheer, ARS Member, 

2Numbers i n  parentheses indicate  References at end of paper. 



S t a t e  Equations and Fundamental Matrix 

Consiaer a l i n e a r  system described by a set of n f i r s t -order  d i f f e r e n t i a l  

equations, I n  vector and m a t r i x  notation 

where s is an n-dimensional state vector, f is an m-dimensional vector of 

forcing inputs applied t o  the  system, and A and B are (n X n)  and (n x m) 

coeff ic ient  matrices, respective3yo 

variables f r o m  which the  e n t i r e  fu ture  behador  of the  system may be determined, 

provided the future  inputs t o  the  system are known, 

problem at a fixed t i m e  to with corresponding state s( to) ,  I n  general, two 

types of problems are admittedj one where the  region of i n t e r e s t  lies between 

fixed-time in te rva l  (to, tf), and the  other where a terminal 

I n  e i t h e r  case t he  solut ion of [l] may be f a c i l i t a t e d  by introducing an (n X n) 

fundamental matrix A ( t )  which satisfies the  following equat3on 

The s t a t e  is defined as a set of output 

Assume i n i t i a l i z a t i o n  of t h e  

tf is not specified. 

t2 3 

and is subject  t o  an a rb i t r a ry  boundary condition t o  be discussed presently. I n  

the  l i t e r a t u r e ,  121 has often been called the  adjoint  equation t o  I l l  and A is 

the adjoint  matrix. 

Premultiplying [l] by A, postmultiplying [2?  by s1 and adding t h e  two 

modified equations y ie ld  

When t h i s  equation is integrated between the limits ti and t2 ,  t he  general state 

t r ans i t i on  equation is 



Nonsingularity of A is assumed, and the superscrfpt -1 denotes t h e  matrix 

inxpeme operzxtion, Several interpretat ions of t h i s  equation are: 

(1) Suppose the  problem-definition does not specify a fixed. terminal t i m e ,  
~ 

A convenient choice of boundm condition f o r  [21 is A(to) = I ( iden t i ty  matrix). 

Letting tl = to and > = t, r3f gives t h e  general solution f o r  s ( t )  i n  terms 

of the  i n i t i a l  state and the  e f f e c t  of 

B, and f 

solved repeatedly f o r  d i f fe ren t  values of t he  in i t i a l .  state, 

f ( t )  over the in te rva l  (to, t ) .  Tf A, 

are assumed t o  be knawn functions of t i m e ,  [a] does not ham t o  be 

(2)  Suppose a fixed terminal t i m e  tf is  specified and the  terminal state 

is  of p r i m  interest .  

and A(t) is computed by in tegmt ing  [21 backwards i n  t i m e ,  Lett ing + tf 

and tl = t, [31 gives the terminal s t a t e  i n  terms of the  instantaneous state 

and the effect of If a desired tePmlnal state is specif ied 

and s ( t )  is measured, then synthesis of a control  function f ( t )  may proceed 

from the terminal f o m  of [3], 

A convenient choice of boundary condition is  A(tf) = I, 

f ( t )  over ( t ,  t f ) .  

(3) Consider a dynamic p e e s s  t ha t  Ls t o  be repe t i t ive ly  controlled based on 

sampled measurements of t he  t b v a r y i n g  state,, Assume t h a t  t h e  mSm%ments are 

contaminated by random noise, and assume tha t  a s t a t i s t i c a l  f i l M n g  and predic- 

t i o n  procedure is employed t o  improve the  state measurements, 

prediction equation is given by [31, and m y  be operated on s t a t i s t i c a l l y .  

The prev-ious developnent indicates  t h e  requirement f o r  inverting the 

The deterministic 

fundamental matrix, 

t h i s  operation, i s  now presented f o r  a special  c lass  of systems. 

An inversion pro.perty, which f l a w s  grceat s implif icat ion of 

Inversion Property of t he  Fundamental Matrix 

Consider a c l a s s  of systems having t h e  following PestPictions: 

(1) The number of state variables is eve- 



(2) The system coeff ic ient  matrix A can be part i t ioned i n t o  4 square sub- 

such tha t  t he  diagonal submatrices are equal t o  the matrices each of order n/2 

nul l  matrix and the off diagonal submatrices are symmetrical. 

A common example of an even-ordered state vector is a set of output variables 

and t h e i r  first derivatives. If a system formulation does not meet the  second 

r e s t r i c t i o n  there may exist a transformation of variables that allaws it t o  do sor 

The fundamental matrix A may be part i t ioned i n t o  4 aquam submatrices 

each of order n/2. 

It is proposed t o  shaw that i f  the ident i ty  matrix is chosen as a boundary con- 

d i t i o n  f o r  A, then 

The superscr ipt  T denotes the matrix transpose operation. No,e that the inverse 

m a t r i x  is obtained by a simple rearrangement of elements) i a e + p  no addition o r  

mult ipl icat ion is n e c e s s q .  

f o l l m ;  

A straightforward proof of thq  inversion property 

By def in i t i on  

Mml fr: I 

Differen t ia t ion  of this expression and subs t i tu t ion  from 121 yields 

Now p a r t i t i o n  AmL i n t o  4 submatrtces each of order n/Z 

A w l  = F. 1 r 7 1  
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Also, 86 stated prev3.omly A may be part i t ioned as 

Equation [SI is given i n  p e i t i o n e d  form on subs t i tu t ion  of 171 and IS? 

rplcal property of M and NP and subst i tut ing i n t o  the transpose of eguation rZl 

g i m  

d. 
a t  c. I= ~IOI 

i Finally, a by tern capa r i son  of 191 and [lo1 shuws that the two EliffeTentiEil 

equations am equivalent i f  

I n  order that [ILI be t r u e  i n  genepal the boundary conditions on each af the 

par t i t ioned  matfices m u s t  be the sameo 

bound- emdi t ion  is the  identity m a t r i x p  e S g e g  A ( t o )  n I, 

A-'(t0) P AT(to) 1 I. 

Howevm, it has been assumed thett  t h e  

Thus# 

Hence, the boundary conditions are t h e  same and the 

proof of [SI is completeo 

A more general i n m i o n  property can be extended t o  the case where the 

boundary condition on A is not  t h e  iden t i ty  matrix, For example, if the 

actual quant i t ies  of i n t e r e s t  are cer tain l i n e a r  combinations of the term;tW state 

-- 

4 &ables, then A(tf) ma;y not  be chosen arbitrarilya The inversion property is 



and A rrrmst be mnertant 

PA 

r l l 1  

K (constant) 112 1 

MultiplyLng through by F1 and then inverttng gives 

A’1 = @‘p ~ r1 FI 
-hS hl 

I Mote t h a t  [SI i s  a spee ia l  case of cl31 when K = 1. The usefulness of [I31 is 

appment s ince K is obtained frcnn [121 for any c h o k e  of  boundary condition, 

and being constant it needs t o  be inverted only onceo Also, i f  A is obtained 

by numerical integration, n 2 1  may be used as a check on the  accuracy of t h e  
P 

integration. 

Application t o  Tpajactory Problems 

Motion of a space vehicle expressed i n  fixed Cartesian coordinates (xy y, z ) ~  

whieh is influenced by a gravi.t&tional po ten t ia l  f i e l d  U(x, yr x) and a non- 

poten t ia l  acceleration vector f(t), may be described i n  component form bs t he  

set of six equations 

1 ’ x +ypz r141 

where t h e  p a r t i a l  depivatives are the  components of t he  gradient of U and are 

continuous i n  t h e  region of in te res t ,  

may be9 for example, due t o  t h z z t .  

t i o n  m y  be defined as 

The nonpotential acceleration components 

The vector velocityy position, and aceelera- 
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If a known reference t r a j e c t o m  solution of the abwe equations is assumed, 

l i n e  perturbation techniques mqr be used effectively t o  invest igate  perturba- 

t i o n s  about t h e  reference and corrective guidance m m m .  If the above 

equations are expanded about the reference i n  a Taylor series and a l l  termKi 

high= than first oPaer negleckd, the perturbed eqmtions of motion m e r ~ r  be 

m i t t e n  as 

- = -  as ‘H=AH+BSf 
d t  d t  6r 

where the  six-dimensional state vector s is defined i n  terms of the empaneats 

of t h e  perturbed velocity and position4 t h e  order of par t i t ion ing  is arbitrary, 

It can be shown that the matrices A and B i n  par t i t ioned form are 

c16 1 

w h e r e  M is &e up @f the  second partials of U with respect t o  x p  y, and zm 

M P M ( t )  f - 

Since M 

of system discussed previously, and t h e  inversion property of fundamental matlcices 

is applicable. It is important t o  point outt however, that the irrversion property 

is not t r u e  if  t h e  problem is fomulated i n  other  than fixed cartesian coordinates, 

fs synm~&ric~ the l inear ized t r a j ec to ry  problem falls i n t o  the category 



If the f'ming aceelemtion is due to thrust, f (t) = F( t) /m(t) 9 W h m  the 

th rus t  f o m e  F ( t )  mhhle mass m(t) m y  be subjed t o  independent p d u r % e  

t i o m ,  Althea it is poss2bltt- to  evxpress 6f i n  lcltzrmg of Fm and 6F and 

a m i d  r e f o r n u t i o n  of the problem as given above, 2% m y  be desirable  to  treat 

Fm 8 s  a at&% vzc&.able rm8 8F as the f'oming f u n d i o n ,  I n  t h i s  case t he  

aLmem?-j.on of the s'mtw jmiztm increases t o  7, and the inversion property as givm 

whepe the  new coeff ic ient  mprt.rices A and B me changed a e c o r d ~  fram h71, 

as 

z a m - -  
2 m 

120 I 

G o m p o n d i n w F  the fin&mentKL m t d x  A is increased by a seventh row and 

column- Since both veloci ty  and posit ion s t a t e  t r ans i t i on  depend upon mass, While 

mass state t r ans i t i on  depends only upon mass i n  a one-to-one fashion, A m a y  be 

par t i t ioned  as 

A t ;  AboUnaary t211 



- ,  , .  
- 9 -  

il. 

where hl and hz are each three-dimensional vectors. Proceeding as i n  t h e  pre- 

vlous section it can be shown t h a t  An' is &Ten by 

11-l a E22 1 

Thusr t h e  modified inversion property retains the major charac te r i s t ic  of simple 

term mammgement although some algebra is required t o  obtain t h e  elements of 
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